FREQUENTLY ASKED QUESTIONS

Click a link below to jump to that section

of the page.

This information is largely generated from the National Institute of Neurological Disorders and Stroke website.

What is Parkinson's Disease?

Parkinson's disease (PD) is a degenerative disorder of the central nervous system. It was first described in 1817 by James Parkinson, a British physician who published a paper on what he called "the shaking palsy." In this paper, he set forth the major symptoms of the disease that would later bear his name. Researchers believe that at least 500,000 people in the United States currently have PD, although some estimates are much higher. Society pays an enormous price for PD. The total cost to the nation is estimated to exceed $6 billion annually.

 

The risk of PD increases with age, so analysts expect the financial and public health impact of this disease to increase as the population gets older. Parkinson's disease belongs to a group of conditions called movement disorders. The four main symptoms are tremor, or trembling in hands, arms, legs, jaw, or head; rigidity, or stiffness of the limbs and trunk; bradykinesia, or slowness of movement; and postural instability, or impaired balance. These symptoms usually begin gradually and worsen with time. As they become more pronounced, patients may have difficulty walking, talking, or completing other simple tasks.

 

Not everyone with one or more of these symptoms has PD, as the symptoms sometimes appear in other diseases as well. PD is both chronic, meaning it persists over a long period of time, and progressive, meaning its symptoms grow worse over time. It is not contagious. Although some PD cases appear to be hereditary, and a few can be traced to specific genetic mutations, most cases are sporadic — that is, the disease does not seem to run in families. Many researchers now believe that PD results from a combination of genetic susceptibility and exposure to one or more environmental factors that trigger the disease.

 

PD is the most common form of parkinsonism, the name for a group of disorders with similar features and symptoms. PD is also called primary parkinsonism or idiopathic PD. The term idiopathic means a disorder for which no cause has yet been found. While most forms of parkinsonism are idiopathic, there are some cases where the cause is known or suspected or where the symptoms result from another disorder. For example, parkinsonism may result from changes in the brain's blood vessels.

What are the causes?

Parkinson's disease occurs when nerve cells, or neurons, in an area of the brain known as the substantia nigra die or become impaired. Normally, these neurons produce the brain chemical dopamine. Dopamine is a chemical messenger responsible for transmitting signals between the substantia nigra and the next "relay station" of the brain, the corpus striatum, to produce smooth, purposeful movement. Loss of dopamine results in abnormal nerve firing patterns within the brain that cause impaired movement. Studies have shown that most Parkinson's patients have lost 60 to 80 percent or more of the dopamine-producing cells in the substantia nigra by the time symptoms appear.

 

Recent studies have shown that people with PD also have loss of the nerve endings that produce the neurotransmitter norepinephrine. Norepinephrine, which is closely related to dopamine, is the main chemical messenger of the sympathetic nervous system, the part of the nervous system that controls many automatic functions of the body, such as pulse and blood pressure. The loss of norepinephrine might help explain several of the non-motor features seen in PD, including fatigue and abnormalities of blood pressure regulation.

 

Many brain cells of people with PD contain Lewy bodies – unusual deposits or clumps of the protein alpha-synuclein, along with other proteins. Researchers do not yet know why Lewy bodies form or what role they play in development of the disease. The clumps may prevent the cell from functioning normally, or they may actually be helpful, perhaps by keeping harmful proteins "locked up" so that the cells can function. Scientists have identified several genetic mutations associated with PD, and many more genes have been tentatively linked to the disorder. Studying the genes responsible for inherited cases of PD can help researchers understand both inherited and sporadic cases. The same genes and proteins that are altered in inherited cases may also be altered in sporadic cases by environmental toxins or other factors.

 

Researchers also hope that discovering genes will help identify new ways of treating PD. Although the importance of genetics in PD is increasingly recognized, most researchers believe environmental exposures increase a person's risk of developing the disease. Even in familial cases, exposure to toxins or other environmental factors may influence when symptoms of the disease appear or how the disease progresses. There are a number of toxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, or MPTP (found in some kinds of synthetic heroin), that can cause parkinsonian symptoms in humans. Other, still-unidentified environmental factors also may cause PD in genetically susceptible individuals.

 

Viruses are another possible environmental trigger for PD. People who developed encephalopathy after a 1918 influenza epidemic were later stricken with severe, progressive Parkinson's-like symptoms. A group of Taiwanese women developed similar symptoms after contracting herpes virus infections. In these women, the symptoms, which later disappeared, were linked to a temporary inflammation of the substantia nigra. Several lines of research suggest that mitochondria may play a role in the development of PD. Mitochondria are the energy-producing components of the cell and are major sources of free radicals — molecules that damage membranes, proteins, DNA, and other parts of the cell. This damage is often referred to as oxidative stress. Oxidative stress-related changes, including free radical damage to DNA, proteins, and fats, have been detected in brains of PD patients.

 

Other research suggests that the cell's protein disposal system may fail in people with PD, causing proteins to build up to harmful levels and trigger cell death. Additional studies have found evidence that clumps of protein that develop inside brain cells of people with PD may contribute to the death of neurons, and that inflammation or overstimulation of cells (because of toxins or other factors) may play a role in the disease. However, the precise role of the protein deposits remains unknown. Some researchers even speculate that the protein buildup is part of an unsuccessful attempt to protect the cell. While mitochondrial dysfunction, oxidative stress, inflammation, and many other cellular processes may contribute to PD, the actual cause of the dopamine cell death is still undetermined.

What are the risk factors?

About 50,000 Americans are diagnosed with PD each year, but getting an accurate count of the number of cases may be impossible because many people in the early stages of the disease assume their symptoms are the result of normal aging and do not seek help from a physician. Also, diagnosis is sometimes difficult and uncertain because other conditions may produce symptoms of PD and there is no definitive test for the disease. People with PD may sometimes be told by their doctors that they have other disorders, and people with PD-like diseases may be incorrectly diagnosed as having PD.

PD strikes about 50 percent more men than women, but the reasons for this discrepancy are unclear. While it occurs in people throughout the world, a number of studies have found a higher incidence in developed countries, possibly because of increased exposure to pesticides or other toxins in those countries. Other studies have found an increased risk in people who live in rural areas and in those who work in certain professions, although the studies to date are not conclusive and the reasons for the apparent risks are not clear. One clear risk factor for PD is age.

 

The average age of onset is 60 years, and the incidence rises significantly with increasing age. However, about 5 to 10 percent of people with PD have "early-onset" disease that begins before the age of 50. Early-onset forms of the disease are often inherited, though not always, and some have been linked to specific gene mutations. People with one or more close relatives who have PD have an increased risk of developing the disease themselves, but the total risk is still just 2 to 5 percent unless the family has a known gene mutation for the disease. An estimated 15 to 25 percent of people with PD have a known relative with the disease.

 

In very rare cases, parkinsonian symptoms may appear in people before the age of 20. This condition is called juvenile parkinsonism. It is most commonly seen in Japan but has been found in other countries as well. It usually begins with dystonia (sustained muscle contractions that cause forced or twisted positions) and bradykinesia, and the symptoms often improve with levodopa medication. Juvenile parkinsonism often runs in families and is sometimes linked to a mutated parkin gene.

What are the symptoms?

Early symptoms of PD are subtle and occur gradually. Affected people may feel mild tremors or have difficulty getting out of a chair. They may notice that they speak too softly or that their handwriting is slow and looks cramped or small. They may lose track of a word or thought, or they may feel tired, irritable, or depressed for no apparent reason. This very early period may last a long time before the more classic and obvious symptoms appear. Friends or gait that includes a tendency to lean forward, small quick steps as if hurrying forward (called festination), and reduced swinging of the arms. They also may have trouble initiating movement (start hesitation), and they may stop suddenly as they walk (freezing).

 

PD does not affect everyone the same way, and the rate of progression differs among patients. Tremor is the major symptom for some patients, while for others, tremor is nonexistent or very minor. PD symptoms often begin on one side of the body. However, as it progresses, the disease eventually affects both sides. Even after the disease involves both sides of the body, the symptoms are often less severe on one side than on the other.

 

The four primary symptoms of PD are:

TREMOR

The tremor associated with PD has a characteristic appearance. Typically, the tremor takes the form of a rhythmic back-and-forth motion at a rate of 4-6 beats per second. It may involve the thumb and forefinger and appear as a "pill rolling" tremor. Tremor often begins in a hand, although sometimes a foot or the jaw is affected first. It is most obvious when the hand is at rest or when a person is under stress. For example, the shaking may become more pronounced a few seconds after the hands are rested on a table. Tremor usually disappears during sleep or improves with intentional movement.

 

RIGIDITY

Rigidity, or a resistance to movement, affects most people with PD. A major principle of body movement is that all muscles have an opposing muscle. Movement is possible not just because one muscle becomes more active, but because the opposing muscle relaxes. In PD, rigidity comes about when, in response to signals from the brain, the delicate balance of opposing muscles is disturbed. The muscles remain constantly tensed and contracted so that the person aches or feels stiff or weak. The rigidity becomes obvious when another person tries to move the patient's arm, which will move only in ratchet-like or short, jerky movements known as "cogwheel" rigidity.

 

BRADYKINESIA

Bradykinesia, or the slowing down and loss of spontaneous and automatic movement, is particularly frustrating because it may make simple tasks somewhat difficult. The person cannot rapidly perform routine movements. Activities once performed quickly and easily — such as washing or dressing — may take several hours.

 

POSTURAL INSTABILITY

Postural instability, or impaired balance, causes patients to fall easily. Affected people also may develop a stooped posture in which the head is bowed and the shoulders are drooped. A number of other symptoms may accompany PD. Some are minor; others are not. Many can be treated with medication or physical therapy. No one can predict which symptoms will affect an individual patient, and the intensity of the symptoms varies from person to person.

Other symptoms include:

DEPRESSION

This is a common problem and may appear early in the course of the disease, even before other symptoms are noticed. Fortunately, depression usually can be successfully treated with antidepressant medications.

 

EMOTIONAL CHANGES

Some people with PD become fearful and insecure. Perhaps they fear they cannot cope with new situations. They may not want to travel, go to parties, or socialize with friends. Some lose their motivation and become dependent on family members. Others may become irritable or uncharacteristically pessimistic.

 

DIFFICULTY WITH SWALLOWING AND CHEWING

Muscles used in swallowing may work less efficiently in later stages of the disease. In these cases, food and saliva may collect in the mouth and back of the throat, which can result in choking or drooling. These problems also may make it difficult to get adequate nutrition. Speech-language therapists, occupational therapists, and dieticians can often help with these problems. 

 

SPEECH CHANGES

About half of all PD patients have problems with speech. They may speak too softly or in a monotone, hesitate before speaking, slur or repeat their words, or speak too fast. A speech therapist may be able to help patients reduce some of these problems.

 

URINARY PROBLEMS OR CONSTIPATION

In some patients, bladder and bowel problems can occur due to the improper functioning of the autonomic nervous system, which is responsible for regulating smooth muscle activity. Some people may become incontinent, while others have trouble urinating. In others, constipation may occur because the intestinal tract operates more slowly. Constipation can also be caused by inactivity, eating a poor diet, or drinking too little fluid. The medications used to treat PD also can contribute to constipation. It can be a persistent problem and, in rare cases, can be serious enough to require hospitalization.

 

SKIN PROBLEMS

 In PD, it is common for the skin on the face to become very oily, particularly on the forehead and at the sides of the nose. The scalp may become oily too, resulting in dandruff. In other cases, the skin can become very dry. These problems are also the result of an improperly functioning autonomic nervous system. Standard treatments for skin problems can help. Excessive sweating, another common symptom, is usually controllable with medications used for PD.

 

SLEEP PROBLEMS

Sleep problems common in PD include difficulty staying asleep at night, restless sleep, nightmares and emotional dreams, and drowsiness or sudden sleep onset during the day. Patients with PD should never take over-the-counter sleep aids without consulting their physicians.

DEMENTIA OR OTHER COGNITIVE PROBLEMS

Some, but not all, people with PD may develop memory problems and slow thinking. In some of these cases, cognitive problems become more severe, leading to a condition called Parkinson's dementia late in the course of the disease. This dementia may affect memory, social judgment, language, reasoning, or other mental skills. There is currently no way to halt PD dementia, but studies have shown that a drug called rivastigmine may slightly reduce the symptoms. The drug donepezil also can reduce behavioral symptoms in some people with PD-related dementia.

 

ORTHOSTATIC HYPOTENSION

Orthostatic hypotension is a sudden drop in blood pressure when a person stands up from a lying-down position. This may cause dizziness, lightheadedness, and, in extreme cases, loss of balance or fainting. Studies have suggested that, in PD, this problem results from a loss of nerve endings in the sympathetic nervous system that controls heart rate, blood pressure, and other automatic functions in the body. The medications used to treat PD also may contribute to this symptom.

 

MUSCLE CRAMPS AND DYSTONIA

The rigidity and lack of normal movement associated with PD often causes muscle cramps, especially in the legs and toes. Massage, stretching, and applying heat may help with these cramps. PD also can be associated with dystonia — sustained muscle contractions that cause forced or twisted positions. Dystonia in PD is often caused by fluctuations in the body's level of dopamine. It can usually be relieved or reduced by adjusting the person's medications.

 

PAIN

Many people with PD develop aching muscles and joints because of the rigidity and abnormal postures often associated with the disease. Treatment with levodopa and other dopaminergic drugs often alleviates these pains to some extent. Certain exercises also may help. People with PD also may develop pain due to compression of nerve roots or dystonia-related muscle spasms. In rare cases, people with PD may develop unexplained burning, stabbing sensations. This type of pain, called "central pain," originates in the brain. Dopaminergic drugs, opiates, antidepressants, and other types of drugs may all be used to treat this type of pain.

 

FATIGUE AND LOSS OF ENERGY

The unusual demands of living with PD often lead to problems with fatigue, especially late in the day. Fatigue may be associated with depression or sleep disorders, but it also may result from muscle stress or from overdoing activity when the person feels well. Fatigue also may result from akinesia – trouble initiating or carrying out movement. Exercise, good sleep habits, staying mentally active, and not forcing too many activities in a short time may help to alleviate fatigue.

SEXUAL DYSFUNCTION

PD often causes erectile dysfunction because of its effects on nerve signals from the brain or because of poor blood circulation. PD-related depression or use of antidepressant medication also may cause decreased sex drive and other problems. These problems are often treatable.

How is Parkinson's diagnosed?

There are currently no blood or laboratory tests that have been proven to help in diagnosing sporadic PD. Therefore the diagnosis is based on medical history and a neurological examination. The disease can be difficult to diagnose accurately. Early signs and symptoms of PD may sometimes be dismissed as the effects of normal aging. The physician may need to observe the person for some time until it is apparent that the symptoms are consistently present. Doctors may sometimes request brain scans or laboratory tests in order to rule out other diseases. However, CT and MRI brain scans of people with PD usually appear normal. Since many other diseases have similar features but require different treatments, making a precise diagnosis as soon as possible is essential so that patients can receive the proper treatment.

 

WHAT IS THE PROGNOSIS?

PD is not by itself a fatal disease, but it does get worse with time. The average life expectancy of a PD patient is generally the same as for people who do not have the disease. However, in the late stages of the disease, PD may cause complications such as choking, pneumonia, and falls that can lead to death. Fortunately, there are many treatment options available for people with PD. The progression of symptoms in PD may take 20 years or more. In some people, however, the disease progresses more quickly. There is no way to predict what course the disease will take for an individual person.

 

One commonly used system for describing how the symptoms of PD progress is called the Hoehn and Yahr scale. Hoehn and Yahr Staging of Parkinson's Disease Stage one Symptoms on one side of the body only. Stage two Symptoms on both sides of the body. No impairment of balance. Stage three Balance impairment. Mild to moderate disease. Physically independent. Stage four Severe disability, but still able to walk or stand unassisted. Stage five Wheelchair-bound or bedridden unless assisted.

What are some drug therapies?

Medications for PD fall into three categories. The first category includes drugs that work directly or indirectly to increase the level of dopamine in the brain. The most common drugs for PD are dopamine precursors – substances such as levodopa that cross the blood-brain barrier and are then changed into dopamine. Other drugs mimic dopamine or prevent or slow its breakdown.

 

The second category of PD drugs affects other neurotransmitters in the body in order to ease some of the symptoms of the disease. These drugs help to reduce tremors and muscle stiffness, which can result from having more acetylcholine than dopamine. The third category of drugs prescribed for PD includes medications that help control the non-motor symptoms of the disease, that is, the symptoms that don't affect movement. For example, people with PD-related depression may be prescribed antidepressants.

 

LEVODOPA 

The cornerstone of therapy for PD is the drug levodopa (also lcalled L-dopa). Levodopa is a simple chemical found naturally in plants and animals. Nerve cells can use levodopa to make dopamine and replenish the brain's dwindling supply. People cannot simply take dopamine pills because dopamine does not easily pass through the blood-brain barrier, a lining of cells inside blood vessels that regulates the transport of oxygen, glucose, and other substances into the brain. Usually, patients are given levodopa combined with carbidopa, which delays the conversion of levodopa into dopamine until it reaches the brain, preventing or diminishing some of the side effects that often accompany levodopa therapy.

 

Levodopa is very successful at reducing the tremors and other symptoms of PD during the early stages of the disease. It allows the majority of people with PD to extend the period of time in which they can lead relatively normal, productive lives. Although levodopa helps most people with PD, not all symptoms respond equally to the drug. Levodopa usually helps most with bradykinesia and rigidity. Problems with balance and other non-motor symptoms may not be alleviated at all. A high-protein diet can interfere with the absorption of levodopa, so some physicians recommend that patients taking the drug restrict their protein consumption during the early parts of the day or avoid taking their medications with protein-rich meals.

 

Levodopa can have a variety of side effects. The most common initial side effects include nausea, vomiting, low blood pressure, and restlessness. The drug also can cause drowsiness or sudden sleep onset, which can make driving and other activities dangerous. Long-term use of levodopa sometimes causes hallucinations and psychosis. The nausea and vomiting caused by levodopa are greatly reduced by combining levodopa and carbidopa, which enhances the effectiveness of a lower dose. Dyskinesias, or involuntary movements such as twitching, twisting, and writhing, commonly develop in people who take large doses of levodopa over an extended period. These movements may be either mild or severe and either very rapid or very slow. Because dyskinesias tend to occur with long-term use of levodopa, doctors often start younger PD patients on other dopamine-increasing drugs and switch to levodopa only when those drugs become ineffective.

 

DOPAMINE AGONISTS

These drugs, which include bromocriptine, pergolide, apomorphine, pramipexole, and ropinirole, mimic the role of dopamine in the brain. They can be given alone or in conjunction with levodopa. They may be used in the early stages of the disease, or later on in order to lengthen the duration of response to levodopa in patients who experience wearing off or on-off effects. They are generally less effective than levodopa in controlling rigidity and bradykinesia. Many of the potential side effects are similar to those associated with the use of levodopa, including drowsiness, sudden sleep onset, hallucinations, confusion, dyskinesias, edema (swelling due to excess fluid in body tissues), nightmares, and vomiting. In rare cases, they can cause compulsive behavior, such as an uncontrollable desire to gamble, hypersexuality, or compulsive shopping.

 

MAO-B INHIBITORS

These drugs inhibit the enzyme monoamine oxidase B, or MAO-B, which breaks down dopamine in the brain. MAO-B inhibitors cause dopamine to accumulate in surviving nerve cells and reduce the symptoms of PD. Selegiline, also called deprenyl, is an MAO-B inhibitor that is commonly used to treat PD. Studies supported by the NINDS have shown that selegiline can delay the need for levodopa therapy by up to a year or more. When selegiline is given with levodopa, it appears to enhance and prolong the response to levodopa and thus may reduce wearing-off fluctuations. Selegiline is usually well-tolerated, although side effects may include nausea, orthostatic hypotension, or insomnia.

 

COMT INHIBITORS 

COMT stands for catechol-O-methyltransferase, another enzyme that helps to break down dopamine. Two COMT inhibitors are approved to treat PD in the United States: entacapone and tolcapone. These drugs prolong the effects of levodopa by preventing the breakdown of dopamine. COMT inhibitors can decrease the duration of "off" periods, and they usually make it possible to reduce the person's dose of levodopa. The most common side effect is diarrhea. The drugs may also cause nausea, sleep disturbances, dizziness, urine discoloration, abdominal pain, low blood pressure, or hallucinations. In a few rare cases, tolcapone has caused severe liver disease. Because of this, patients taking tolcapone need regular monitoring of their liver function.

 

AMANTADINE

An antiviral drug, amantadine, can help reduce symptoms of PD and levodopa-induced dyskinesia. It is often used alone in the early stages of the disease. It also may be used with an anticholinergic drug or levodopa. After several months, amantadine's effectiveness wears off in up to half of the patients taking it. Amantadine's side effects may include insomnia, mottled skin, edema, agitation, or hallucinations. Researchers are not certain how amantadine works in PD, but it may increase the effects of dopamine.

 

ANTICHOLINERGICS

These drugs, which include trihexyphenidyl, benztropine, and ethopropazine, decrease the activity of the neurotransmitter acetylcholine and help to reduce tremors and muscle rigidity. Only about half the patients who receive anticholinergics are helped by it, usually for a brief period and with only a 30 percent improvement. Side effects may include dry mouth, constipation, urinary retention, hallucinations, memory loss, blurred vision, and confusion. When recommending a course of treatment, a doctor will assess how much the symptoms disrupt the patient's life and then tailor therapy to the person's particular condition. Since no two patients will react the same way to a given drug, it may take time and patience to get the dose just right. Even then, symptoms may not be completely alleviated.

MEDS TO TREAT MOTOR SYMPTOMS

Drugs that increase brain levels of dopamine: Levodopa 

Drugs that mimic dopamine (dopamine agonists): Apomorphine, Bromocriptine, Pergolide, Pramipexole, Ropinirole

Drugs that inhibit dopamine breakdown (MAO-B inhibitors): Selegiline (deprenyl)

Drugs that inhibit dopamine breakdown (COMT inhibitors): Entacapone, Tolcapone

Drugs that decrease the action of acetylcholine (anticholinergics): Trihexyphenidyl, Benztropine, Ethopropazine

Drugs with an unknown mechanism of action for PD: Amantadine

 

MEDS TO TREAT NON-MOTOR SYMPTOMS

Doctors may prescribe a variety of medications to treat the non-motor symptoms of PD, such as depression and anxiety. For example, depression can be treated with standard anti-depressant drugs such as amytriptyline or fluoxetine (however, as stated earlier, fluoxetine should not be combined with MAO-B inhibitors). Anxiety can sometimes be treated with drugs called benzodiazepines. Orthostatic hypotension may be helped by increasing salt intake, reducing antihypertension drugs, or prescribing medications such as fludrocortisone. Hallucinations, delusions, and other psychotic symptoms are often caused by the drugs prescribed for PD. Therefore reducing or stopping PD medications may alleviate psychosis. If such measures are not effective, doctors sometimes prescribe drugs called atypical antipsychotics, which include clozapine and quetiapine. Clozapine also may help to control dyskinesias.

What are some surgical therapies?

Treating PD with surgery was once a common practice. But after the discovery of levodopa, surgery was restricted to only a few cases. Studies in the past few decades have led to great improvements in surgical techniques, and surgery is again being used in people with advanced PD for whom drug therapy is no longer sufficient.

 

PALLIDOTOMY

In this procedure, a surgeon selectively destroys a portion of the brain called the globus pallidus. Pallidotomy can improve symptoms of tremor, rigidity, and bradykinesia, possibly by interrupting the connections between the globus pallidus and the striatum or thalamus. Some studies have also found that pallidotomy can improve gait and balance and reduce the amount of levodopa patients require, thus reducing drug-induced dyskinesias and dystonia. A related procedure, called thalamotomy, involves surgically destroying part of the brain's thalamus. Thalamotomy is useful primarily to reduce tremor. Because these procedures cause permanent destruction of brain tissue, they have largely been replaced by deep brain stimulation for treatment of PD.

 

DEEP BRAIN STIMULATION

Deep brain stimulation, or DBS, uses an electrode surgically implanted into part of the brain. The electrodes are connected by a wire under the skin to a small electrical device called a pulse generator that is implanted in the chest beneath the collarbone. The pulse generator and electrodes painlessly stimulate the brain in a way that helps to stop many of the symptoms of PD. DBS has now been approved by the U.S. Food and Drug Administration, and it is widely used as a treatment for PD.

 

DBS can be used on one or both sides of the brain. If it is used on just one side, it will affect symptoms on the opposite side of the body. DBS is primarily used to stimulate one of three brain regions: the subthalamic nucleus, the globus pallidus, or the thalamus. However, the subthalamic nucleus, a tiny area located beneath the thalamus, is the most common target. Stimulation of either the globus pallidus or the subthalamic nucleus can reduce tremor, bradykinesia, and rigidity. Stimulation of the thalamus is useful primarily for reducing tremor. DBS usually reduces the need for levodopa and related drugs, which in turn decreases dyskinesias. It also helps to relieve on-off fluctuation of symptoms. People who initially responded well to treatment with levodopa tend to respond well to DBS.

 

While the benefits of DBS can be substantial, it usually does not help with speech problems, "freezing," posture, balance, anxiety, depression, or dementia. One advantage of DBS compared to pallidotomy and thalamotomy is that the electrical current can be turned off using a handheld device. The pulse generator also can be externally programmed. Patients must return to the medical center frequently for several months after DBS surgery in order to have the stimulation adjusted by trained doctors or other medical professionals. The pulse generator must be programmed very carefully to give the best results. Doctors also must supervise reductions in patients' medications.

 

After a few months, the number of medical visits usually decreases significantly, though patients may occasionally need to return to the center to have their stimulator checked. Also, the battery for the pulse generator must be surgically replaced every three to five years, though externally rechargeable batteries may eventually become available. Long-term results of DBS are still being determined. DBS does not stop PD from progressing, and some problems may gradually return. However, studies up to several years after surgery have shown that many people's symptoms remain significantly better than they were before DBS.

 

DBS is not a good solution for everyone. It is generally used only in people with advanced, levodopa-responsive PD who have developed dyskinesias or other disabling "off" symptoms despite drug therapy. It is not normally used in people with memory problems, hallucinations, a poor response to levodopa, severe depression, or poor health. DBS generally does not help people with "atypical" parkinsonian syndromes such as multiple system atrophy, progressive supranuclear palsy, or post-traumatic parkinsonism. Younger people generally do better than older people after DBS, but healthy older people can undergo DBS and they may benefit a great deal.

 

As with any brain surgery, DBS has potential complications, including stroke or brain hemorrhage. These complications are rare, however. There is also a risk of infection, which may require antibiotics or even replacement of parts of the DBS system. The stimulator may sometimes cause speech problems, balance problems, or even dyskinesias. However, those problems are often reversible if the stimulation is modified. Researchers are continuing to study DBS and to develop ways of improving it. They are conducting clinical studies to determine the best part of the brain to receive stimulation and to determine the long-term effects of this therapy. They also are working to improve the technology used in DBS.

What are some supporting therapies?

A wide variety of complementary and supportive therapies may be used for PD. Among these therapies are standard physical, occupational, and speech therapy techniques, which can help with such problems as gait and voice disorders, tremors and rigidity, and cognitive decline. Other types of supportive therapies include the following:

 

DIET

At this time there are no specific vitamins, minerals, or other nutrients that have any proven therapeutic value in PD. Some early reports have suggested that dietary supplements might be protective in PD. In addition, a phase II clinical trial of a supplement called coenzyme Q10 suggested that large doses of this substance might slow disease progression in patients with early-stage PD. The NINDS and other components of the National Institutes of Health are funding research to determine if caffeine, antioxidants, and other dietary factors may be beneficial for preventing or treating PD. While there is currently no proof that any specific dietary factor is beneficial, a normal, healthy diet can promote overall well-being for PD patients just as it would for anyone else. Eating a fiber-rich diet and drinking plenty of fluids also can help alleviate constipation. A high protein diet, however, may limit levodopa's effectiveness.

 

EXERCISE

Exercise can help people with PD improve their mobility and flexibility. Some doctors prescribe physical therapy or muscle-strengthening exercises to tone muscles and to put underused and rigid muscles through a full range of motion. Exercises will not stop disease progression, but they may improve body strength so that the person is less disabled. Exercises also improve balance, helping people minimize gait problems, and can strengthen certain muscles so that people can speak and swallow better. Exercise can also improve the emotional well-being of people with PD, and it may improve the brain's dopamine synthesis or increase levels of beneficial compounds called neurotrophic factors in the brain. Although structured exercise programs help many patients, more general physical activity, such as walking, gardening, swimming, calisthenics, and using exercise machines, also is beneficial. People with PD should always check with their doctors before beginning a new exercise program.

 

Other complementary therapies that are used by some individuals with PD include massage therapy, yoga, tai chi, hypnosis, acupuncture, and the Alexander technique, which optimizes posture and muscle activity. There have been limited studies suggesting mild benefits with some of these therapies, but they do not slow PD and there is no convincing evidence that they are beneficial.

Can scientists prevent or predict Parkinson's?

In most cases, there is no way to predict or prevent sporadic PD. However, researchers are looking for a biomarker — a biochemical abnormality that all patients with PD might share — that could be picked up by screening techniques or by a simple chemical test given to people who do not have any parkinsonian symptoms. This could help doctors identify people at risk of the disease. It also might allow them to find treatments that will stop the disease process in the early stages.

 

Positron emission tomography (PET) scanning may lead to important advances in our knowledge about PD. PET scans of the brain produce pictures of chemical changes as they occur. Using PET, research scientists can study the brain's dopamine receptors (the sites on nerve cells that bind with dopamine) to determine if the loss of dopamine activity follows or precedes degeneration of the neurons that make this chemical. This information could help scientists better understand the disease process and may potentially lead to improved treatments.

 

In rare cases, where people have a clearly inherited form of PD, researchers can test for known gene mutations as a way of determining an individual's risk of the disease. However, this genetic testing can have far-reaching implications and people should carefully consider whether they want to know the results of such tests. Genetic testing is currently available only as a part of research studies.

What's the latest research say?

Website: Parkinson's Foundation

In recent years, Parkinson's research has advanced to the point that halting the progression of PD, restoring lost function, and even preventing the disease are all considered realistic goals. While the ultimate goal of preventing PD may take years to achieve, researchers are making great progress in understanding and treating PD. Two of the most promising areas of research are Gene Therapy and Viral Therapy. See the Parkinson's Foundation website for more information.

 
 
 
 
 
 
 
 
 
 

Brevard Parkinson's Support Group is a 501(c)(3) organization. All donations fund group-sponsored initiatives throughout Brevard County, are 100% tax deductible, and greatly appreciated.

SUPPORT US

 Terms of Service | Privacy Policy©2018 Brevard Parkinson's Support Group.

•  info@brevardparkinsons.org  •  (321) 622-5845  

  • White Facebook Icon